MakeItFrom.com
Menu (ESC)

ZE41A Magnesium vs. AISI 304Cu Stainless Steel

ZE41A magnesium belongs to the magnesium alloys classification, while AISI 304Cu stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE41A magnesium and the bottom bar is AISI 304Cu stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
160
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.3
45
Fatigue Strength, MPa 98
190
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Shear Strength, MPa 150
370
Tensile Strength: Ultimate (UTS), MPa 210
530
Tensile Strength: Yield (Proof), MPa 140
210

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 150
930
Melting Completion (Liquidus), °C 640
1410
Melting Onset (Solidus), °C 540
1370
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
13
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 18
16
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
3.0
Embodied Energy, MJ/kg 170
43
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
190
Resilience: Unit (Modulus of Resilience), kJ/m3 220
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 31
19
Strength to Weight: Bending, points 41
19
Thermal Diffusivity, mm2/s 59
3.5
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.1
3.0 to 4.0
Iron (Fe), % 0
63.9 to 72
Magnesium (Mg), % 91.7 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Nickel (Ni), % 0 to 0.010
8.0 to 10
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0