MakeItFrom.com
Menu (ESC)

ZE41A Magnesium vs. AISI 310MoLN Stainless Steel

ZE41A magnesium belongs to the magnesium alloys classification, while AISI 310MoLN stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE41A magnesium and the bottom bar is AISI 310MoLN stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
190
Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 3.3
28
Fatigue Strength, MPa 98
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
80
Shear Strength, MPa 150
400
Tensile Strength: Ultimate (UTS), MPa 210
610
Tensile Strength: Yield (Proof), MPa 140
290

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 150
1100
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 540
1380
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
14
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
28
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 24
5.0
Embodied Energy, MJ/kg 170
70
Embodied Water, L/kg 940
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
140
Resilience: Unit (Modulus of Resilience), kJ/m3 220
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 31
21
Strength to Weight: Bending, points 41
20
Thermal Diffusivity, mm2/s 59
3.7
Thermal Shock Resistance, points 12
14

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
45.2 to 53.8
Magnesium (Mg), % 91.7 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 2.0
Molybdenum (Mo), % 0
1.6 to 2.6
Nickel (Ni), % 0 to 0.010
20.5 to 23.5
Nitrogen (N), % 0
0.090 to 0.15
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0