MakeItFrom.com
Menu (ESC)

ZE41A Magnesium vs. S17400 Stainless Steel

ZE41A magnesium belongs to the magnesium alloys classification, while S17400 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE41A magnesium and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 63
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 3.3
11 to 21
Fatigue Strength, MPa 98
380 to 670
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
75
Shear Strength, MPa 150
570 to 830
Tensile Strength: Ultimate (UTS), MPa 210
910 to 1390
Tensile Strength: Yield (Proof), MPa 140
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 150
850
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 540
1400
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 18
14
Density, g/cm3 1.9
7.8
Embodied Carbon, kg CO2/kg material 24
2.7
Embodied Energy, MJ/kg 170
39
Embodied Water, L/kg 940
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.1
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 220
880 to 4060
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 31
32 to 49
Strength to Weight: Bending, points 41
27 to 35
Thermal Diffusivity, mm2/s 59
4.5
Thermal Shock Resistance, points 12
30 to 46

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
3.0 to 5.0
Iron (Fe), % 0
70.4 to 78.9
Magnesium (Mg), % 91.7 to 95.4
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Nickel (Ni), % 0 to 0.010
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 0.75 to 1.8
0
Zinc (Zn), % 3.5 to 5.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0