MakeItFrom.com
Menu (ESC)

ZE63A Magnesium vs. ASTM A182 Grade F3V

ZE63A magnesium belongs to the magnesium alloys classification, while ASTM A182 grade F3V belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE63A magnesium and the bottom bar is ASTM A182 grade F3V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
210
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 7.7
20
Fatigue Strength, MPa 120
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 170
410
Tensile Strength: Ultimate (UTS), MPa 300
660
Tensile Strength: Yield (Proof), MPa 190
470

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
470
Melting Completion (Liquidus), °C 510
1470
Melting Onset (Solidus), °C 390
1430
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 22
4.2
Density, g/cm3 2.0
7.9
Embodied Carbon, kg CO2/kg material 24
2.3
Embodied Energy, MJ/kg 180
33
Embodied Water, L/kg 920
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
120
Resilience: Unit (Modulus of Resilience), kJ/m3 400
590
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 40
23
Strength to Weight: Bending, points 48
21
Thermal Diffusivity, mm2/s 57
10
Thermal Shock Resistance, points 17
19

Alloy Composition

Boron (B), % 0
0.0010 to 0.0030
Carbon (C), % 0
0.050 to 0.18
Chromium (Cr), % 0
2.8 to 3.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
94.4 to 95.7
Magnesium (Mg), % 89.6 to 92
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.010
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0
0.015 to 0.035
Unspecified Rare Earths, % 2.1 to 3.0
0
Vanadium (V), % 0
0.2 to 0.3
Zinc (Zn), % 5.5 to 6.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0