MakeItFrom.com
Menu (ESC)

ZE63A Magnesium vs. EN 1.5502 Steel

ZE63A magnesium belongs to the magnesium alloys classification, while EN 1.5502 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE63A magnesium and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 7.7
12 to 20
Fatigue Strength, MPa 120
190 to 290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 170
280 to 330
Tensile Strength: Ultimate (UTS), MPa 300
400 to 1380
Tensile Strength: Yield (Proof), MPa 190
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 510
1460
Melting Onset (Solidus), °C 390
1420
Specific Heat Capacity, J/kg-K 950
470
Thermal Conductivity, W/m-K 110
52
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 22
1.9
Density, g/cm3 2.0
7.8
Embodied Carbon, kg CO2/kg material 24
1.4
Embodied Energy, MJ/kg 180
19
Embodied Water, L/kg 920
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 400
200 to 520
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 58
24
Strength to Weight: Axial, points 40
14 to 49
Strength to Weight: Bending, points 48
15 to 35
Thermal Diffusivity, mm2/s 57
14
Thermal Shock Resistance, points 17
12 to 40

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.1
0 to 0.25
Iron (Fe), % 0
98 to 99.249
Magnesium (Mg), % 89.6 to 92
0
Manganese (Mn), % 0
0.6 to 0.9
Nickel (Ni), % 0 to 0.010
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Unspecified Rare Earths, % 2.1 to 3.0
0
Zinc (Zn), % 5.5 to 6.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0