MakeItFrom.com
Menu (ESC)

ZE63A Magnesium vs. EN 2.4669 Nickel

ZE63A magnesium belongs to the magnesium alloys classification, while EN 2.4669 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZE63A magnesium and the bottom bar is EN 2.4669 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
190
Elongation at Break, % 7.7
16
Fatigue Strength, MPa 120
390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 170
680
Tensile Strength: Ultimate (UTS), MPa 300
1110
Tensile Strength: Yield (Proof), MPa 190
720

Thermal Properties

Latent Heat of Fusion, J/g 330
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 510
1380
Melting Onset (Solidus), °C 390
1330
Specific Heat Capacity, J/kg-K 950
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 22
60
Density, g/cm3 2.0
8.4
Embodied Carbon, kg CO2/kg material 24
10
Embodied Energy, MJ/kg 180
150
Embodied Water, L/kg 920
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
160
Resilience: Unit (Modulus of Resilience), kJ/m3 400
1380
Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 58
23
Strength to Weight: Axial, points 40
37
Strength to Weight: Bending, points 48
28
Thermal Diffusivity, mm2/s 57
3.1
Thermal Shock Resistance, points 17
33

Alloy Composition

Aluminum (Al), % 0
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0
5.0 to 9.0
Magnesium (Mg), % 89.6 to 92
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0 to 0.010
65.9 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
2.3 to 2.8
Unspecified Rare Earths, % 2.1 to 3.0
0
Zinc (Zn), % 5.5 to 6.0
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0