MakeItFrom.com
Menu (ESC)

ZK40A Magnesium vs. EN 1.0536 Steel

ZK40A magnesium belongs to the magnesium alloys classification, while EN 1.0536 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK40A magnesium and the bottom bar is EN 1.0536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 4.2
18
Fatigue Strength, MPa 190
340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 160
440
Tensile Strength: Ultimate (UTS), MPa 280
710
Tensile Strength: Yield (Proof), MPa 260
510

Thermal Properties

Latent Heat of Fusion, J/g 340
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 600
1460
Melting Onset (Solidus), °C 540
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
51
Thermal Expansion, µm/m-K 26
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
2.1
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 24
1.7
Embodied Energy, MJ/kg 160
24
Embodied Water, L/kg 950
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
120
Resilience: Unit (Modulus of Resilience), kJ/m3 740
690
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 65
24
Strength to Weight: Axial, points 43
25
Strength to Weight: Bending, points 53
23
Thermal Diffusivity, mm2/s 62
14
Thermal Shock Resistance, points 17
22

Alloy Composition

Aluminum (Al), % 0
0.010 to 0.050
Carbon (C), % 0
0.16 to 0.22
Iron (Fe), % 0
97.2 to 98.4
Magnesium (Mg), % 94.2 to 96.1
0
Manganese (Mn), % 0
1.3 to 1.7
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0
0.080 to 0.15
Zinc (Zn), % 3.5 to 4.5
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0