MakeItFrom.com
Menu (ESC)

ZK40A Magnesium vs. EN 2.4952 Nickel

ZK40A magnesium belongs to the magnesium alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK40A magnesium and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 4.2
17
Fatigue Strength, MPa 190
370
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
74
Shear Strength, MPa 160
700
Tensile Strength: Ultimate (UTS), MPa 280
1150
Tensile Strength: Yield (Proof), MPa 260
670

Thermal Properties

Latent Heat of Fusion, J/g 340
330
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 600
1350
Melting Onset (Solidus), °C 540
1300
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 130
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
55
Density, g/cm3 1.8
8.3
Embodied Carbon, kg CO2/kg material 24
9.8
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 950
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
170
Resilience: Unit (Modulus of Resilience), kJ/m3 740
1180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 65
23
Strength to Weight: Axial, points 43
38
Strength to Weight: Bending, points 53
29
Thermal Diffusivity, mm2/s 62
3.1
Thermal Shock Resistance, points 17
33

Alloy Composition

Aluminum (Al), % 0
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 0
0 to 1.5
Magnesium (Mg), % 94.2 to 96.1
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
65 to 79.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 3.5 to 4.5
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0