MakeItFrom.com
Menu (ESC)

ZK40A Magnesium vs. Grade 19 Titanium

ZK40A magnesium belongs to the magnesium alloys classification, while grade 19 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK40A magnesium and the bottom bar is grade 19 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
120
Elongation at Break, % 4.2
5.6 to 17
Fatigue Strength, MPa 190
550 to 620
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 17
47
Shear Strength, MPa 160
550 to 750
Tensile Strength: Ultimate (UTS), MPa 280
890 to 1300
Tensile Strength: Yield (Proof), MPa 260
870 to 1170

Thermal Properties

Latent Heat of Fusion, J/g 340
400
Maximum Temperature: Mechanical, °C 120
370
Melting Completion (Liquidus), °C 600
1660
Melting Onset (Solidus), °C 540
1600
Specific Heat Capacity, J/kg-K 970
520
Thermal Conductivity, W/m-K 110
6.2
Thermal Expansion, µm/m-K 26
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
45
Density, g/cm3 1.8
5.0
Embodied Carbon, kg CO2/kg material 24
47
Embodied Energy, MJ/kg 160
760
Embodied Water, L/kg 950
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
70 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 740
3040 to 5530
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 65
33
Strength to Weight: Axial, points 43
49 to 72
Strength to Weight: Bending, points 53
41 to 53
Thermal Diffusivity, mm2/s 62
2.4
Thermal Shock Resistance, points 17
57 to 83

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 0
0 to 0.3
Magnesium (Mg), % 94.2 to 96.1
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Titanium (Ti), % 0
71.1 to 77
Vanadium (V), % 0
7.5 to 8.5
Zinc (Zn), % 3.5 to 4.5
0
Zirconium (Zr), % 0.45 to 1.0
3.5 to 4.5
Residuals, % 0
0 to 0.4