MakeItFrom.com
Menu (ESC)

ZK40A Magnesium vs. N06035 Nickel

ZK40A magnesium belongs to the magnesium alloys classification, while N06035 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK40A magnesium and the bottom bar is N06035 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 4.2
34
Fatigue Strength, MPa 190
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
84
Shear Strength, MPa 160
440
Tensile Strength: Ultimate (UTS), MPa 280
660
Tensile Strength: Yield (Proof), MPa 260
270

Thermal Properties

Latent Heat of Fusion, J/g 340
340
Maximum Temperature: Mechanical, °C 120
1030
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 970
450
Thermal Expansion, µm/m-K 26
13

Otherwise Unclassified Properties

Base Metal Price, % relative 13
60
Density, g/cm3 1.8
8.4
Embodied Carbon, kg CO2/kg material 24
10
Embodied Energy, MJ/kg 160
140
Embodied Water, L/kg 950
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
180
Resilience: Unit (Modulus of Resilience), kJ/m3 740
170
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 65
24
Strength to Weight: Axial, points 43
22
Strength to Weight: Bending, points 53
20
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.4
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
32.3 to 34.3
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 0
0 to 2.0
Magnesium (Mg), % 94.2 to 96.1
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
7.6 to 9.0
Nickel (Ni), % 0
51.1 to 60.2
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.015
Tungsten (W), % 0
0 to 0.6
Vanadium (V), % 0
0 to 0.2
Zinc (Zn), % 3.5 to 4.5
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0