MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. AISI 316Ti Stainless Steel

ZK51A magnesium belongs to the magnesium alloys classification, while AISI 316Ti stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 4.7
41
Fatigue Strength, MPa 62
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
82
Shear Strength, MPa 160
400
Tensile Strength: Ultimate (UTS), MPa 240
580
Tensile Strength: Yield (Proof), MPa 150
230

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 120
940
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
15
Thermal Expansion, µm/m-K 26
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
19
Density, g/cm3 1.8
7.9
Embodied Carbon, kg CO2/kg material 24
4.0
Embodied Energy, MJ/kg 160
55
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
190
Resilience: Unit (Modulus of Resilience), kJ/m3 260
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 64
25
Strength to Weight: Axial, points 36
20
Strength to Weight: Bending, points 47
20
Thermal Diffusivity, mm2/s 61
4.0
Thermal Shock Resistance, points 15
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
61.3 to 72
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.010
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.7
Zinc (Zn), % 3.6 to 5.5
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0