MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. EN 1.4525 Stainless Steel

ZK51A magnesium belongs to the magnesium alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
190
Elongation at Break, % 4.7
5.6 to 13
Fatigue Strength, MPa 62
480 to 540
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
76
Tensile Strength: Ultimate (UTS), MPa 240
1030 to 1250
Tensile Strength: Yield (Proof), MPa 150
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 340
280
Maximum Temperature: Mechanical, °C 120
860
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 550
1390
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
18
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 24
2.8
Embodied Energy, MJ/kg 160
39
Embodied Water, L/kg 940
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 260
1820 to 3230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 64
25
Strength to Weight: Axial, points 36
36 to 45
Strength to Weight: Bending, points 47
29 to 33
Thermal Diffusivity, mm2/s 61
4.7
Thermal Shock Resistance, points 15
34 to 41

Alloy Composition

Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 0 to 0.1
2.5 to 4.0
Iron (Fe), % 0
70.4 to 79
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0 to 0.010
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 3.6 to 5.5
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0