MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. C67400 Bronze

ZK51A magnesium belongs to the magnesium alloys classification, while C67400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is C67400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
110
Elongation at Break, % 4.7
22 to 28
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 18
41
Shear Strength, MPa 160
310 to 350
Tensile Strength: Ultimate (UTS), MPa 240
480 to 610
Tensile Strength: Yield (Proof), MPa 150
250 to 370

Thermal Properties

Latent Heat of Fusion, J/g 340
190
Maximum Temperature: Mechanical, °C 120
130
Melting Completion (Liquidus), °C 640
890
Melting Onset (Solidus), °C 550
870
Specific Heat Capacity, J/kg-K 970
400
Thermal Conductivity, W/m-K 110
100
Thermal Expansion, µm/m-K 26
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
23
Electrical Conductivity: Equal Weight (Specific), % IACS 140
26

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 1.8
7.9
Embodied Carbon, kg CO2/kg material 24
2.8
Embodied Energy, MJ/kg 160
48
Embodied Water, L/kg 940
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 260
300 to 660
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 64
20
Strength to Weight: Axial, points 36
17 to 22
Strength to Weight: Bending, points 47
17 to 20
Thermal Diffusivity, mm2/s 61
32
Thermal Shock Resistance, points 15
16 to 20

Alloy Composition

Aluminum (Al), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.1
57 to 60
Iron (Fe), % 0
0 to 0.35
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
2.0 to 3.5
Nickel (Ni), % 0 to 0.010
0 to 0.25
Silicon (Si), % 0
0.5 to 1.5
Tin (Sn), % 0
0 to 0.3
Zinc (Zn), % 3.6 to 5.5
31.1 to 40
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0
0 to 0.5