MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. N06060 Nickel

ZK51A magnesium belongs to the magnesium alloys classification, while N06060 nickel belongs to the nickel alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is N06060 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 4.7
45
Fatigue Strength, MPa 62
230
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 18
82
Shear Strength, MPa 160
490
Tensile Strength: Ultimate (UTS), MPa 240
700
Tensile Strength: Yield (Proof), MPa 150
270

Thermal Properties

Latent Heat of Fusion, J/g 340
320
Maximum Temperature: Mechanical, °C 120
980
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 550
1450
Specific Heat Capacity, J/kg-K 970
430
Thermal Expansion, µm/m-K 26
12

Otherwise Unclassified Properties

Base Metal Price, % relative 13
65
Density, g/cm3 1.8
8.7
Embodied Carbon, kg CO2/kg material 24
12
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 940
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
250
Resilience: Unit (Modulus of Resilience), kJ/m3 260
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 64
23
Strength to Weight: Axial, points 36
22
Strength to Weight: Bending, points 47
20
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22
Copper (Cu), % 0 to 0.1
0.25 to 1.3
Iron (Fe), % 0
0 to 14
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
12 to 14
Nickel (Ni), % 0 to 0.010
54 to 60
Niobium (Nb), % 0
0.5 to 1.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tungsten (W), % 0
0.25 to 1.3
Zinc (Zn), % 3.6 to 5.5
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0