MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. S44627 Stainless Steel

ZK51A magnesium belongs to the magnesium alloys classification, while S44627 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
200
Elongation at Break, % 4.7
24
Fatigue Strength, MPa 62
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
80
Shear Strength, MPa 160
310
Tensile Strength: Ultimate (UTS), MPa 240
490
Tensile Strength: Yield (Proof), MPa 150
300

Thermal Properties

Latent Heat of Fusion, J/g 340
290
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 970
480
Thermal Conductivity, W/m-K 110
17
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
14
Density, g/cm3 1.8
7.7
Embodied Carbon, kg CO2/kg material 24
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 940
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 64
25
Strength to Weight: Axial, points 36
18
Strength to Weight: Bending, points 47
18
Thermal Diffusivity, mm2/s 61
4.6
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
25 to 27.5
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0
69.2 to 74.2
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0 to 0.010
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 3.6 to 5.5
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0