MakeItFrom.com
Menu (ESC)

ZK51A Magnesium vs. S44635 Stainless Steel

ZK51A magnesium belongs to the magnesium alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK51A magnesium and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 45
210
Elongation at Break, % 4.7
23
Fatigue Strength, MPa 62
390
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 160
450
Tensile Strength: Ultimate (UTS), MPa 240
710
Tensile Strength: Yield (Proof), MPa 150
580

Thermal Properties

Latent Heat of Fusion, J/g 340
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 970
470
Thermal Conductivity, W/m-K 110
16
Thermal Expansion, µm/m-K 26
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 28
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
22
Density, g/cm3 1.8
7.8
Embodied Carbon, kg CO2/kg material 24
4.4
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 940
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10
150
Resilience: Unit (Modulus of Resilience), kJ/m3 260
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 64
25
Strength to Weight: Axial, points 36
25
Strength to Weight: Bending, points 47
23
Thermal Diffusivity, mm2/s 61
4.4
Thermal Shock Resistance, points 15
23

Alloy Composition

Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
61.5 to 68.5
Magnesium (Mg), % 93.1 to 95.9
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0 to 0.010
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 3.6 to 5.5
0
Zirconium (Zr), % 0.5 to 1.0
0
Residuals, % 0 to 0.3
0