MakeItFrom.com
Menu (ESC)

ZK60A Magnesium vs. EN 1.4655 Stainless Steel

ZK60A magnesium belongs to the magnesium alloys classification, while EN 1.4655 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK60A magnesium and the bottom bar is EN 1.4655 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 4.5 to 9.9
23 to 25
Fatigue Strength, MPa 150 to 180
320
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
78
Shear Strength, MPa 170 to 190
460
Tensile Strength: Ultimate (UTS), MPa 320 to 330
720 to 730
Tensile Strength: Yield (Proof), MPa 230 to 250
450 to 480

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 120
1050
Melting Completion (Liquidus), °C 600
1420
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 26
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
15
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 23
2.9
Embodied Energy, MJ/kg 160
41
Embodied Water, L/kg 940
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 29
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 690
510 to 580
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 47 to 49
26
Strength to Weight: Bending, points 55 to 56
23
Thermal Diffusivity, mm2/s 66
4.0
Thermal Shock Resistance, points 19 to 20
20

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0
1.0 to 3.0
Iron (Fe), % 0
63.6 to 73.4
Magnesium (Mg), % 92.5 to 94.8
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0.1 to 0.6
Nickel (Ni), % 0
3.5 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0