MakeItFrom.com
Menu (ESC)

ZK60A Magnesium vs. EN 1.4988 Stainless Steel

ZK60A magnesium belongs to the magnesium alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK60A magnesium and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 4.5 to 9.9
34
Fatigue Strength, MPa 150 to 180
230
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
77
Shear Strength, MPa 170 to 190
430
Tensile Strength: Ultimate (UTS), MPa 320 to 330
640
Tensile Strength: Yield (Proof), MPa 230 to 250
290

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 120
920
Melting Completion (Liquidus), °C 600
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 26
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29 to 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 23
6.0
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 14 to 29
180
Resilience: Unit (Modulus of Resilience), kJ/m3 570 to 690
210
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 63
25
Strength to Weight: Axial, points 47 to 49
23
Strength to Weight: Bending, points 55 to 56
21
Thermal Diffusivity, mm2/s 66
4.0
Thermal Shock Resistance, points 19 to 20
14

Alloy Composition

Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Iron (Fe), % 0
62.1 to 69.5
Magnesium (Mg), % 92.5 to 94.8
0
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 4.8 to 6.2
0
Zirconium (Zr), % 0.45 to 1.0
0
Residuals, % 0 to 0.3
0