MakeItFrom.com
Menu (ESC)

ZK61A Magnesium vs. EN 1.4872 Stainless Steel

ZK61A magnesium belongs to the magnesium alloys classification, while EN 1.4872 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK61A magnesium and the bottom bar is EN 1.4872 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.8 to 7.1
28
Fatigue Strength, MPa 120 to 140
410
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 170 to 180
620
Tensile Strength: Ultimate (UTS), MPa 290 to 310
950
Tensile Strength: Yield (Proof), MPa 180 to 200
560

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 120
1150
Melting Completion (Liquidus), °C 640
1390
Melting Onset (Solidus), °C 530
1340
Specific Heat Capacity, J/kg-K 960
490
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 27
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
17
Density, g/cm3 1.9
7.6
Embodied Carbon, kg CO2/kg material 23
3.3
Embodied Energy, MJ/kg 160
47
Embodied Water, L/kg 940
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 19
230
Resilience: Unit (Modulus of Resilience), kJ/m3 370 to 420
780
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
26
Strength to Weight: Axial, points 42 to 45
35
Strength to Weight: Bending, points 50 to 53
28
Thermal Diffusivity, mm2/s 65
3.9
Thermal Shock Resistance, points 17 to 18
21

Alloy Composition

Carbon (C), % 0
0.2 to 0.3
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0
54.2 to 61.6
Magnesium (Mg), % 92.1 to 93.9
0
Manganese (Mn), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.010
6.0 to 8.0
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0.6 to 1.0
0
Residuals, % 0 to 0.3
0