MakeItFrom.com
Menu (ESC)

ZK61A Magnesium vs. C19020 Copper

ZK61A magnesium belongs to the magnesium alloys classification, while C19020 copper belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK61A magnesium and the bottom bar is C19020 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
120
Elongation at Break, % 5.8 to 7.1
2.3 to 5.7
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 18
44
Shear Strength, MPa 170 to 180
260 to 340
Tensile Strength: Ultimate (UTS), MPa 290 to 310
440 to 590

Thermal Properties

Latent Heat of Fusion, J/g 330
210
Maximum Temperature: Mechanical, °C 120
200
Melting Completion (Liquidus), °C 640
1090
Melting Onset (Solidus), °C 530
1030
Specific Heat Capacity, J/kg-K 960
390
Thermal Conductivity, W/m-K 120
190
Thermal Expansion, µm/m-K 27
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
50
Electrical Conductivity: Equal Weight (Specific), % IACS 130
50

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 1.9
8.9
Embodied Carbon, kg CO2/kg material 23
2.8
Embodied Energy, MJ/kg 160
44
Embodied Water, L/kg 940
310

Common Calculations

Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 62
18
Strength to Weight: Axial, points 42 to 45
14 to 18
Strength to Weight: Bending, points 50 to 53
14 to 18
Thermal Diffusivity, mm2/s 65
55
Thermal Shock Resistance, points 17 to 18
16 to 21

Alloy Composition

Copper (Cu), % 0 to 0.1
95.7 to 99.19
Magnesium (Mg), % 92.1 to 93.9
0
Nickel (Ni), % 0 to 0.010
0.5 to 3.0
Phosphorus (P), % 0
0.010 to 0.2
Tin (Sn), % 0
0.3 to 0.9
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0.6 to 1.0
0
Residuals, % 0
0 to 0.2