MakeItFrom.com
Menu (ESC)

ZK61A Magnesium vs. S32906 Stainless Steel

ZK61A magnesium belongs to the magnesium alloys classification, while S32906 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK61A magnesium and the bottom bar is S32906 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
210
Elongation at Break, % 5.8 to 7.1
28
Fatigue Strength, MPa 120 to 140
460
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 18
81
Shear Strength, MPa 170 to 180
550
Tensile Strength: Ultimate (UTS), MPa 290 to 310
850
Tensile Strength: Yield (Proof), MPa 180 to 200
620

Thermal Properties

Latent Heat of Fusion, J/g 330
300
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
20
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 23
3.7
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 940
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 370 to 420
950
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 42 to 45
30
Strength to Weight: Bending, points 50 to 53
26
Thermal Diffusivity, mm2/s 65
3.6
Thermal Shock Resistance, points 17 to 18
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 0 to 0.1
0 to 0.8
Iron (Fe), % 0
56.6 to 63.6
Magnesium (Mg), % 92.1 to 93.9
0
Manganese (Mn), % 0
0.8 to 1.5
Molybdenum (Mo), % 0
1.5 to 2.6
Nickel (Ni), % 0 to 0.010
5.8 to 7.5
Nitrogen (N), % 0
0.3 to 0.4
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0.6 to 1.0
0
Residuals, % 0 to 0.3
0