MakeItFrom.com
Menu (ESC)

ZK61A Magnesium vs. S35135 Stainless Steel

ZK61A magnesium belongs to the magnesium alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK61A magnesium and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.8 to 7.1
34
Fatigue Strength, MPa 120 to 140
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
79
Shear Strength, MPa 170 to 180
390
Tensile Strength: Ultimate (UTS), MPa 290 to 310
590
Tensile Strength: Yield (Proof), MPa 180 to 200
230

Thermal Properties

Latent Heat of Fusion, J/g 330
320
Maximum Temperature: Mechanical, °C 120
1100
Melting Completion (Liquidus), °C 640
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 960
470
Thermal Expansion, µm/m-K 27
16

Otherwise Unclassified Properties

Base Metal Price, % relative 13
37
Density, g/cm3 1.9
8.1
Embodied Carbon, kg CO2/kg material 23
6.8
Embodied Energy, MJ/kg 160
94
Embodied Water, L/kg 940
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 19
160
Resilience: Unit (Modulus of Resilience), kJ/m3 370 to 420
130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 42 to 45
20
Strength to Weight: Bending, points 50 to 53
19
Thermal Shock Resistance, points 17 to 18
13

Alloy Composition

Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0
28.3 to 45
Magnesium (Mg), % 92.1 to 93.9
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.010
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0.6 to 1.0
0
Residuals, % 0 to 0.3
0