MakeItFrom.com
Menu (ESC)

ZK61A Magnesium vs. S82122 Stainless Steel

ZK61A magnesium belongs to the magnesium alloys classification, while S82122 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ZK61A magnesium and the bottom bar is S82122 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 46
200
Elongation at Break, % 5.8 to 7.1
34
Fatigue Strength, MPa 120 to 140
360
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 18
78
Shear Strength, MPa 170 to 180
460
Tensile Strength: Ultimate (UTS), MPa 290 to 310
680
Tensile Strength: Yield (Proof), MPa 180 to 200
450

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 120
990
Melting Completion (Liquidus), °C 640
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 960
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 27
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 29
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 130
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 13
12
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 23
2.6
Embodied Energy, MJ/kg 160
37
Embodied Water, L/kg 940
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 15 to 19
210
Resilience: Unit (Modulus of Resilience), kJ/m3 370 to 420
510
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 62
25
Strength to Weight: Axial, points 42 to 45
25
Strength to Weight: Bending, points 50 to 53
22
Thermal Diffusivity, mm2/s 65
4.0
Thermal Shock Resistance, points 17 to 18
19

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20.5 to 21.5
Copper (Cu), % 0 to 0.1
0.5 to 1.5
Iron (Fe), % 0
68.9 to 75.4
Magnesium (Mg), % 92.1 to 93.9
0
Manganese (Mn), % 0
2.0 to 4.0
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.010
1.5 to 2.5
Nitrogen (N), % 0
0.15 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.75
Sulfur (S), % 0
0 to 0.020
Zinc (Zn), % 5.5 to 6.5
0
Zirconium (Zr), % 0.6 to 1.0
0
Residuals, % 0 to 0.3
0