MakeItFrom.com
Menu (ESC)

Z40301 Zinc vs. 6025 Aluminum

Z40301 zinc belongs to the zinc alloys classification, while 6025 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Z40301 zinc and the bottom bar is 6025 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
70
Elongation at Break, % 60
2.8 to 10
Poisson's Ratio 0.25
0.33
Shear Modulus, GPa 35
26
Tensile Strength: Ultimate (UTS), MPa 190
190 to 240
Tensile Strength: Yield (Proof), MPa 150
68 to 210

Thermal Properties

Latent Heat of Fusion, J/g 110
410
Maximum Temperature: Mechanical, °C 90
160
Melting Completion (Liquidus), °C 410
650
Melting Onset (Solidus), °C 400
550
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 110
130
Thermal Expansion, µm/m-K 26
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
33
Electrical Conductivity: Equal Weight (Specific), % IACS 37
110

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 6.6
2.8
Embodied Carbon, kg CO2/kg material 2.8
8.5
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 340
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
6.0 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 130
33 to 310
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 23
50
Strength to Weight: Axial, points 7.9
19 to 24
Strength to Weight: Bending, points 11
26 to 31
Thermal Diffusivity, mm2/s 44
54
Thermal Shock Resistance, points 5.9
8.2 to 10

Alloy Composition

Aluminum (Al), % 0 to 0.010
91.7 to 96.3
Cadmium (Cd), % 0 to 0.0050
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0.5 to 1.0
0.2 to 0.7
Iron (Fe), % 0 to 0.010
0 to 0.7
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
2.1 to 3.0
Manganese (Mn), % 0
0.6 to 1.4
Silicon (Si), % 0
0.8 to 1.5
Tin (Sn), % 0 to 0.0030
0
Titanium (Ti), % 0 to 0.040
0 to 0.2
Zinc (Zn), % 98.9 to 99.5
0 to 0.5
Residuals, % 0
0 to 0.15