MakeItFrom.com
Menu (ESC)

Z20301 Zinc vs. EN AC-43500 Aluminum

Z20301 zinc belongs to the zinc alloys classification, while EN AC-43500 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is Z20301 zinc and the bottom bar is EN AC-43500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 87
72
Elongation at Break, % 53
4.5 to 13
Poisson's Ratio 0.25
0.33
Shear Modulus, GPa 35
27
Tensile Strength: Ultimate (UTS), MPa 160
220 to 300
Tensile Strength: Yield (Proof), MPa 130
140 to 170

Thermal Properties

Latent Heat of Fusion, J/g 110
550
Maximum Temperature: Mechanical, °C 90
170
Melting Completion (Liquidus), °C 410
600
Melting Onset (Solidus), °C 400
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 110
140
Thermal Expansion, µm/m-K 26
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
38
Electrical Conductivity: Equal Weight (Specific), % IACS 37
130

Otherwise Unclassified Properties

Base Metal Price, % relative 11
9.5
Density, g/cm3 6.6
2.6
Embodied Carbon, kg CO2/kg material 2.8
7.8
Embodied Energy, MJ/kg 53
150
Embodied Water, L/kg 340
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 78
12 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 96
130 to 200
Stiffness to Weight: Axial, points 7.4
16
Stiffness to Weight: Bending, points 23
54
Strength to Weight: Axial, points 6.7
24 to 33
Strength to Weight: Bending, points 9.9
32 to 39
Thermal Diffusivity, mm2/s 44
60
Thermal Shock Resistance, points 5.0
10 to 14

Alloy Composition

Aluminum (Al), % 0 to 0.0020
86.4 to 90.5
Cadmium (Cd), % 0 to 0.010
0
Copper (Cu), % 0 to 0.0050
0 to 0.050
Iron (Fe), % 0 to 0.010
0 to 0.25
Lead (Pb), % 0 to 0.1
0
Magnesium (Mg), % 0
0.1 to 0.6
Manganese (Mn), % 0
0.4 to 0.8
Silicon (Si), % 0
9.0 to 11.5
Titanium (Ti), % 0 to 0.020
0 to 0.2
Zinc (Zn), % 99.853 to 100
0 to 0.070
Residuals, % 0
0 to 0.15