1080-H14 Aluminum
1080-H14 aluminum is 1080 aluminum in the H14 temper. To achieve this temper, the metal is strain hardened to a strength that is roughly halfway between annealed (O) and full-hard (H18). The graph bars on the material properties cards below compare 1080-H14 aluminum to: 1000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Elastic (Young's, Tensile) Modulus
68 GPa 9.9 x 106 psi
Elongation at Break
6.8 %
Fatigue Strength
37 MPa 5.4 x 103 psi
Poisson's Ratio
0.33
Shear Modulus
26 GPa 3.7 x 106 psi
Shear Strength
58 MPa 8.4 x 103 psi
Tensile Strength: Ultimate (UTS)
99 MPa 14 x 103 psi
Tensile Strength: Yield (Proof)
73 MPa 11 x 103 psi
Thermal Properties
Latent Heat of Fusion
400 J/g
Maximum Temperature: Mechanical
170 °C 340 °F
Melting Completion (Liquidus)
640 °C 1190 °F
Melting Onset (Solidus)
640 °C 1180 °F
Specific Heat Capacity
900 J/kg-K 0.22 BTU/lb-°F
Thermal Conductivity
230 W/m-K 130 BTU/h-ft-°F
Thermal Expansion
23 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
61 % IACS
Electrical Conductivity: Equal Weight (Specific)
200 % IACS
Otherwise Unclassified Properties
Base Metal Price
9.5 % relative
Density
2.7 g/cm3 170 lb/ft3
Embodied Carbon
8.3 kg CO2/kg material
Embodied Energy
160 MJ/kg 67 x 103 BTU/lb
Embodied Water
1200 L/kg 140 gal/lb
Common Calculations
Resilience: Ultimate (Unit Rupture Work)
6.2 MJ/m3
Resilience: Unit (Modulus of Resilience)
39 kJ/m3
Stiffness to Weight: Axial
14 points
Stiffness to Weight: Bending
50 points
Strength to Weight: Axial
10 points
Strength to Weight: Bending
18 points
Thermal Diffusivity
94 mm2/s
Thermal Shock Resistance
4.4 points
Alloy Composition
Al | 99.8 to 100 | |
Si | 0 to 0.15 | |
Fe | 0 to 0.15 | |
V | 0 to 0.050 | |
Ti | 0 to 0.030 | |
Zn | 0 to 0.030 | |
Cu | 0 to 0.030 | |
Ga | 0 to 0.030 | |
Mn | 0 to 0.020 | |
Mg | 0 to 0.020 | |
res. | 0 to 0.020 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Further Reading
Handbook of Aluminum Bonding Technology and Data, J. D. Minford, 1993
Aluminum: Properties and Physical Metallurgy, John E. Hatch (editor), 1984
ISO 6361-2: Wrought aluminium and aluminium alloys - Sheets, strips and plates - Part 2: Mechanical properties
Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM Handbook vol. 2, ASM International, 1993