MakeItFrom.com
Menu (ESC)

5019-H34 Aluminum

5019-H34 aluminum is 5019 aluminum in the H34 temper. To achieve this temper, the metal is strain hardened, and then stabilized, to a strength that is roughly halfway between annealed (O) and full-hard (H38).

The graph bars on the material properties cards below compare 5019-H34 aluminum to: 5000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Elastic (Young's, Tensile) Modulus

68 GPa 9.8 x 106 psi

Elongation at Break

4.5 %

Fatigue Strength

130 MPa 19 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

200 MPa 28 x 103 psi

Tensile Strength: Ultimate (UTS)

340 MPa 49 x 103 psi

Tensile Strength: Yield (Proof)

240 MPa 35 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

180 °C 360 °F

Melting Completion (Liquidus)

640 °C 1190 °F

Melting Onset (Solidus)

540 °C 1000 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

130 W/m-K 73 BTU/h-ft-°F

Thermal Expansion

24 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

29 % IACS

Electrical Conductivity: Equal Weight (Specific)

98 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

9.0 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

14 MJ/m3

Resilience: Unit (Modulus of Resilience)

420 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

51 points

Strength to Weight: Axial

35 points

Strength to Weight: Bending

40 points

Thermal Diffusivity

52 mm2/s

Thermal Shock Resistance

15 points

Alloy Composition

Aluminum (Al)Al 91.5 to 95.3
Magnesium (Mg)Mg 4.5 to 5.6
Manganese (Mn)Mn 0.1 to 0.6
Iron (Fe)Fe 0 to 0.5
Silicon (Si)Si 0 to 0.4
Chromium (Cr)Cr 0 to 0.2
Titanium (Ti)Ti 0 to 0.2
Zinc (Zn)Zn 0 to 0.2
Copper (Cu)Cu 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

EN 754-2: Aluminium and aluminium alloys. Cold drawn rod/bar and tube. Mechanical properties

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products