MakeItFrom.com
Menu (ESC)

6005-T6 Aluminum

6005-T6 aluminum is 6005 aluminum in the T6 temper. To achieve this temper, the metal is solution heat-treated and artificially aged until it meets standard mechanical property requirements.

It has the second highest strength and second lowest ductility compared to the other variants of 6005 aluminum.

The graph bars on the material properties cards below compare 6005-T6 aluminum to: 6000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

95

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

11 %

Fatigue Strength

95 MPa 14 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

210 MPa 30 x 103 psi

Tensile Strength: Ultimate (UTS)

300 MPa 43 x 103 psi

Tensile Strength: Yield (Proof)

250 MPa 36 x 103 psi

Thermal Properties

Latent Heat of Fusion

410 J/g

Maximum Temperature: Mechanical

160 °C 320 °F

Melting Completion (Liquidus)

650 °C 1210 °F

Melting Onset (Solidus)

610 °C 1130 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

190 W/m-K 110 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

54 % IACS

Electrical Conductivity: Equal Weight (Specific)

180 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-740 mV

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.3 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

30 MJ/m3

Resilience: Unit (Modulus of Resilience)

450 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

51 points

Strength to Weight: Axial

31 points

Strength to Weight: Bending

37 points

Thermal Diffusivity

77 mm2/s

Thermal Shock Resistance

13 points

Alloy Composition

Aluminum (Al)Al 97.5 to 99
Silicon (Si)Si 0.6 to 0.9
Magnesium (Mg)Mg 0.4 to 0.6
Iron (Fe)Fe 0 to 0.35
Manganese (Mn)Mn 0 to 0.1
Chromium (Cr)Cr 0 to 0.1
Titanium (Ti)Ti 0 to 0.1
Zinc (Zn)Zn 0 to 0.1
Copper (Cu)Cu 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products