MakeItFrom.com
Menu (ESC)

6061-T4511 Aluminum

6061-T4511 aluminum is 6061 aluminum in the T4511 temper. To achieve this temper, the metal is solution heat-treated, stress relieved, then naturally aged. The stress relief is accomplished by stretching the metal by an amount that depends on the type of standard wrought product being made (extrusion or tube). The metal is straightened after the stretching operation. This temper is closely related to T4510, which does not permit such straightening.

It has the second lowest strength compared to the other variants of 6061 aluminum.

The graph bars on the material properties cards below compare 6061-T4511 aluminum to: 6000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Elastic (Young's, Tensile) Modulus

69 GPa 10 x 106 psi

Elongation at Break

16 %

Fatigue Strength

66 MPa 9.6 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.8 x 106 psi

Shear Strength

120 MPa 18 x 103 psi

Tensile Strength: Ultimate (UTS)

200 MPa 29 x 103 psi

Tensile Strength: Yield (Proof)

130 MPa 18 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

170 °C 330 °F

Melting Completion (Liquidus)

650 °C 1190 °F

Melting Onset (Solidus)

580 °C 1080 °F

Specific Heat Capacity

900 J/kg-K 0.21 BTU/lb-°F

Thermal Conductivity

170 W/m-K 97 BTU/h-ft-°F

Thermal Expansion

24 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

43 % IACS

Electrical Conductivity: Equal Weight (Specific)

140 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-740 mV

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.3 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1180 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

28 MJ/m3

Resilience: Unit (Modulus of Resilience)

110 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

21 points

Strength to Weight: Bending

28 points

Thermal Diffusivity

68 mm2/s

Thermal Shock Resistance

8.9 points

Alloy Composition

Aluminum (Al)Al 95.9 to 98.6
Magnesium (Mg)Mg 0.8 to 1.2
Silicon (Si)Si 0.4 to 0.8
Iron (Fe)Fe 0 to 0.7
Copper (Cu)Cu 0.15 to 0.4
Chromium (Cr)Cr 0.040 to 0.35
Zinc (Zn)Zn 0 to 0.25
Manganese (Mn)Mn 0 to 0.15
Titanium (Ti)Ti 0 to 0.15
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B308: Standard Specification for Aluminum-Alloy 6061-T6 Standard Structural Profiles

ASTM B547: Standard Specification for Aluminum and Aluminum-Alloy Formed and Arc-Welded Round Tube

ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012

ASTM B209: Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate

Pressure Vessels: External Pressure Technology, 2nd ed., Carl T. F. Ross, 2011

EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties

Aluminum Standards and Data, Aluminum Association Inc., 2013

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products