6063-O Aluminum
6063-O aluminum is 6063 aluminum in the annealed condition. It has the lowest strength and highest ductility compared to the other variants of 6063 aluminum. The graph bars on the material properties cards below compare 6063-O aluminum to: 6000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Brinell Hardness
25
Elastic (Young's, Tensile) Modulus
68 GPa 9.9 x 106 psi
Elongation at Break
21 %
Fatigue Strength
55 MPa 8.0 x 103 psi
Poisson's Ratio
0.33
Shear Modulus
26 GPa 3.7 x 106 psi
Shear Strength
70 MPa 10 x 103 psi
Tensile Strength: Ultimate (UTS)
110 MPa 15 x 103 psi
Tensile Strength: Yield (Proof)
49 MPa 7.2 x 103 psi
Thermal Properties
Latent Heat of Fusion
400 J/g
Maximum Temperature: Mechanical
160 °C 320 °F
Melting Completion (Liquidus)
650 °C 1210 °F
Melting Onset (Solidus)
620 °C 1140 °F
Specific Heat Capacity
900 J/kg-K 0.22 BTU/lb-°F
Thermal Conductivity
220 W/m-K 130 BTU/h-ft-°F
Thermal Expansion
23 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
58 % IACS
Electrical Conductivity: Equal Weight (Specific)
190 % IACS
Otherwise Unclassified Properties
Base Metal Price
9.5 % relative
Calomel Potential
-740 mV
Density
2.7 g/cm3 170 lb/ft3
Embodied Carbon
8.3 kg CO2/kg material
Embodied Energy
150 MJ/kg 66 x 103 BTU/lb
Embodied Water
1190 L/kg 140 gal/lb
Common Calculations
Resilience: Ultimate (Unit Rupture Work)
19 MJ/m3
Resilience: Unit (Modulus of Resilience)
18 kJ/m3
Stiffness to Weight: Axial
14 points
Stiffness to Weight: Bending
50 points
Strength to Weight: Axial
11 points
Strength to Weight: Bending
18 points
Thermal Diffusivity
89 mm2/s
Thermal Shock Resistance
4.8 points
Alloy Composition
Al | 97.5 to 99.4 | |
Mg | 0.45 to 0.9 | |
Si | 0.2 to 0.6 | |
Fe | 0 to 0.35 | |
Mn | 0 to 0.1 | |
Cr | 0 to 0.1 | |
Ti | 0 to 0.1 | |
Zn | 0 to 0.1 | |
Cu | 0 to 0.1 | |
res. | 0 to 0.15 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Further Reading
ASTM B483: Standard Specification for Aluminum and Aluminum-Alloy Drawn Tube and Pipe for General Purpose Applications
ASTM B210: Standard Specification for Aluminum and Aluminum-Alloy Drawn Seamless Tubes
ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes
Environmental Degradation of Advanced and Traditional Engineering Materials, Lloyd H. Hihara et al., 2014.
EN 754-2: Aluminium and aluminium alloys. Cold drawn rod/bar and tube. Mechanical properties
Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012
EN 755-2: Aluminium and aluminium alloys. Extruded rod/bar, tube and profiles. Mechanical properties
Aluminum Standards and Data, Aluminum Association Inc., 2013
ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993
EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products