MakeItFrom.com
Menu (ESC)

6063-T1 Aluminum

6063-T1 aluminum is 6063 aluminum in the T1 temper. To achieve this temper, the metal is naturally aged until it meets standard mechanical property requirements. It has the second lowest strength compared to the other variants of 6063 aluminum.

The graph bars on the material properties cards below compare 6063-T1 aluminum to: 6000-series alloys (top), all aluminum alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

42

Elastic (Young's, Tensile) Modulus

68 GPa 9.9 x 106 psi

Elongation at Break

16 %

Fatigue Strength

60 MPa 8.7 x 103 psi

Poisson's Ratio

0.33

Shear Modulus

26 GPa 3.7 x 106 psi

Shear Strength

95 MPa 14 x 103 psi

Tensile Strength: Ultimate (UTS)

140 MPa 20 x 103 psi

Tensile Strength: Yield (Proof)

78 MPa 11 x 103 psi

Thermal Properties

Latent Heat of Fusion

400 J/g

Maximum Temperature: Mechanical

160 °C 320 °F

Melting Completion (Liquidus)

650 °C 1210 °F

Melting Onset (Solidus)

620 °C 1140 °F

Specific Heat Capacity

900 J/kg-K 0.22 BTU/lb-°F

Thermal Conductivity

190 W/m-K 110 BTU/h-ft-°F

Thermal Expansion

23 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

50 % IACS

Electrical Conductivity: Equal Weight (Specific)

170 % IACS

Otherwise Unclassified Properties

Base Metal Price

9.5 % relative

Calomel Potential

-740 mV

Density

2.7 g/cm3 170 lb/ft3

Embodied Carbon

8.3 kg CO2/kg material

Embodied Energy

150 MJ/kg 66 x 103 BTU/lb

Embodied Water

1190 L/kg 140 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

19 MJ/m3

Resilience: Unit (Modulus of Resilience)

44 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

50 points

Strength to Weight: Axial

14 points

Strength to Weight: Bending

22 points

Thermal Diffusivity

79 mm2/s

Thermal Shock Resistance

6.2 points

Alloy Composition

Aluminum (Al)Al 97.5 to 99.4
Magnesium (Mg)Mg 0.45 to 0.9
Silicon (Si)Si 0.2 to 0.6
Iron (Fe)Fe 0 to 0.35
Manganese (Mn)Mn 0 to 0.1
Chromium (Cr)Cr 0 to 0.1
Titanium (Ti)Ti 0 to 0.1
Zinc (Zn)Zn 0 to 0.1
Copper (Cu)Cu 0 to 0.1
Residualsres. 0 to 0.15

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Further Reading

ASTM B491: Standard Specification for Aluminum and Aluminum-Alloy Extruded Round Tubes for General-Purpose Applications

ASTM B221: Standard Specification for Aluminum and Aluminum-Alloy Extruded Bars, Rods, Wire, Profiles, and Tubes

Environmental Degradation of Advanced and Traditional Engineering Materials, Lloyd H. Hihara et al., 2014.

Advanced Materials in Automotive Engineering, Jason Rowe (editor), 2012

Aluminum Standards and Data, Aluminum Association Inc., 2013

ASM Specialty Handbook: Aluminum and Aluminum Alloys, J. R. Davis (editor), 1993

EN 573-3: Aluminium and aluminium alloys. Chemical composition and form of wrought products. Chemical composition and form of products