Cold Worked (+C700) 1.4306 Stainless Steel
EN 1.4306 +C700 steel is EN 1.4306 stainless steel in the cold worked (strain hardened) condition. The graph bars on the material properties cards below compare EN 1.4306 +C700 steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Brinell Hardness
230
Elastic (Young's, Tensile) Modulus
200 GPa 29 x 106 psi
Elongation at Break
22 %
Fatigue Strength
260 MPa 38 x 103 psi
Poisson's Ratio
0.28
Shear Modulus
77 GPa 11 x 106 psi
Shear Strength
490 MPa 71 x 103 psi
Tensile Strength: Ultimate (UTS)
780 MPa 110 x 103 psi
Tensile Strength: Yield (Proof)
390 MPa 57 x 103 psi
Thermal Properties
Latent Heat of Fusion
290 J/g
Maximum Temperature: Corrosion
420 °C 790 °F
Maximum Temperature: Mechanical
960 °C 1770 °F
Melting Completion (Liquidus)
1420 °C 2590 °F
Melting Onset (Solidus)
1380 °C 2510 °F
Specific Heat Capacity
480 J/kg-K 0.11 BTU/lb-°F
Thermal Conductivity
15 W/m-K 8.7 BTU/h-ft-°F
Thermal Expansion
16 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
2.4 % IACS
Electrical Conductivity: Equal Weight (Specific)
2.7 % IACS
Otherwise Unclassified Properties
Base Metal Price
16 % relative
Density
7.8 g/cm3 490 lb/ft3
Embodied Carbon
3.2 kg CO2/kg material
Embodied Energy
45 MJ/kg 19 x 103 BTU/lb
Embodied Water
150 L/kg 18 gal/lb
Common Calculations
PREN (Pitting Resistance)
20
Resilience: Ultimate (Unit Rupture Work)
150 MJ/m3
Resilience: Unit (Modulus of Resilience)
390 kJ/m3
Stiffness to Weight: Axial
14 points
Stiffness to Weight: Bending
25 points
Strength to Weight: Axial
28 points
Strength to Weight: Bending
24 points
Thermal Diffusivity
4.0 mm2/s
Thermal Shock Resistance
18 points
Alloy Composition
Fe | 64.8 to 72 | |
Cr | 18 to 20 | |
Ni | 10 to 12 | |
Mn | 0 to 2.0 | |
Si | 0 to 1.0 | |
N | 0 to 0.1 | |
P | 0 to 0.045 | |
C | 0 to 0.030 | |
S | 0 to 0.015 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Further Reading
EN 10250-4: Open die steel forgings for general engineering purposes - Part 4: Stainless steels
EN 10088-3: Stainless steels - Part 3: Technical delivery conditions for semi-finished products, bars, rods, wire, sections and bright products of corrosion resisting steels for general purposes
EN 10088-1: Stainless steels - Part 1: List of stainless steels
Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002
Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984
Advances in Stainless Steels, Baldev Raj et al. (editors), 2010