MakeItFrom.com
Menu (ESC)

EN 1.0481 (P295GH) Non-Alloy Steel

EN 1.0481 steel is a carbon (non-alloy) steel formulated for primary forming into wrought products. Cited properties are appropriate for the normalized condition. 1.0481 is the EN numeric designation for this material. P295GH is the EN chemical designation.

It has a moderately high embodied energy among wrought carbon or non-alloy steels. In addition, it has a moderately high base cost and a moderately high electrical conductivity.

The graph bars on the material properties cards below compare EN 1.0481 steel to: wrought carbon or non-alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

150

Elastic (Young's, Tensile) Modulus

190 GPa 27 x 106 psi

Elongation at Break

24 %

Fatigue Strength

210 MPa 31 x 103 psi

Impact Strength: V-Notched Charpy

46 J 34 ft-lb

Poisson's Ratio

0.29

Shear Modulus

73 GPa 11 x 106 psi

Shear Strength

330 MPa 47 x 103 psi

Tensile Strength: Ultimate (UTS)

510 MPa 75 x 103 psi

Tensile Strength: Yield (Proof)

300 MPa 43 x 103 psi

Thermal Properties

Latent Heat of Fusion

250 J/g

Maximum Temperature: Mechanical

400 °C 750 °F

Melting Completion (Liquidus)

1460 °C 2660 °F

Melting Onset (Solidus)

1420 °C 2590 °F

Specific Heat Capacity

470 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

50 W/m-K 29 BTU/h-ft-°F

Thermal Expansion

12 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

7.3 % IACS

Electrical Conductivity: Equal Weight (Specific)

8.3 % IACS

Otherwise Unclassified Properties

Base Metal Price

2.2 % relative

Density

7.8 g/cm3 490 lb/ft3

Embodied Carbon

1.5 kg CO2/kg material

Embodied Energy

20 MJ/kg 8.4 x 103 BTU/lb

Embodied Water

49 L/kg 5.8 gal/lb

Common Calculations

Resilience: Ultimate (Unit Rupture Work)

100 MJ/m3

Resilience: Unit (Modulus of Resilience)

230 kJ/m3

Stiffness to Weight: Axial

13 points

Stiffness to Weight: Bending

24 points

Strength to Weight: Axial

18 points

Strength to Weight: Bending

18 points

Thermal Diffusivity

13 mm2/s

Thermal Shock Resistance

16 points

Alloy Composition

Iron (Fe)Fe 96.8 to 99
Manganese (Mn)Mn 0.9 to 1.5
Silicon (Si)Si 0 to 0.4
Chromium (Cr)Cr 0 to 0.3
Nickel (Ni)Ni 0 to 0.3
Copper (Cu)Cu 0 to 0.3
Carbon (C)C 0.080 to 0.2
Molybdenum (Mo)Mo 0 to 0.080
Aluminum (Al)Al 0.020 to 0.024
Titanium (Ti)Ti 0 to 0.030
Phosphorus (P)P 0 to 0.025
Niobium (Nb)Nb 0 to 0.020
Vanadium (V)V 0 to 0.020
Nitrogen (N)N 0 to 0.012
Sulfur (S)S 0 to 0.010

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

EN 10028-2: Flat products made of steels for pressure purposes - Part 2: Non-alloy and alloy steels with specified elevated temperature properties

Creep-Resistant Steels, Fujio Abe et al. (editors), 2008

Pressure Vessels: External Pressure Technology, 2nd ed., Carl T. F. Ross, 2011

Carbon Steel Handbook, D. Gandy, 2007

ASM Specialty Handbook: Carbon and Alloy Steels, J. R. Davis (editor), 1996

Ferrous Materials: Steel and Cast Iron, Hans Berns and Werner Theisen, 2008

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015

Steels: Processing, Structure, and Performance, 2nd ed., George Krauss, 2015