High Shearability (+S) 1.1219 Steel
EN 1.1219 +S steel is EN 1.1219 steel in the shearability treated condition. The graph bars on the material properties cards below compare EN 1.1219 +S steel to: wrought carbon or non-alloy steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Brinell Hardness
220
Elastic (Young's, Tensile) Modulus
190 GPa 27 x 106 psi
Poisson's Ratio
0.29
Shear Modulus
72 GPa 10 x 106 psi
Tensile Strength: Ultimate (UTS)
770 MPa 110 x 103 psi
Thermal Properties
Latent Heat of Fusion
250 J/g
Maximum Temperature: Mechanical
400 °C 750 °F
Melting Completion (Liquidus)
1460 °C 2650 °F
Melting Onset (Solidus)
1410 °C 2580 °F
Specific Heat Capacity
470 J/kg-K 0.11 BTU/lb-°F
Thermal Conductivity
51 W/m-K 30 BTU/h-ft-°F
Thermal Expansion
12 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
7.1 % IACS
Electrical Conductivity: Equal Weight (Specific)
8.1 % IACS
Otherwise Unclassified Properties
Base Metal Price
1.9 % relative
Density
7.8 g/cm3 490 lb/ft3
Embodied Carbon
1.4 kg CO2/kg material
Embodied Energy
19 MJ/kg 8.0 x 103 BTU/lb
Embodied Water
47 L/kg 5.5 gal/lb
Common Calculations
Stiffness to Weight: Axial
13 points
Stiffness to Weight: Bending
24 points
Strength to Weight: Axial
27 points
Strength to Weight: Bending
24 points
Thermal Diffusivity
14 mm2/s
Thermal Shock Resistance
25 points
Alloy Composition
Fe | 98.3 to 99.4 | |
Mn | 0.6 to 0.9 | |
C | 0.52 to 0.6 | |
Si | 0 to 0.4 | |
Cu | 0 to 0.3 | |
Al | 0 to 0.050 | |
S | 0 to 0.030 | |
P | 0 to 0.025 | |
O | 0 to 0.0020 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Further Reading
ISO 683-17: Heat-treated steels, alloy steels and free-cutting steels - Part 17: Ball and roller bearing steels
Carbon Steel Handbook, D. Gandy, 2007
Ferrous Materials: Steel and Cast Iron, Hans Berns and Werner Theisen, 2008
Steels: Processing, Structure, and Performance, 2nd ed., George Krauss, 2015