Hot Finished 305 Stainless Steel
Hot finished AISI 305 is AISI 305 stainless steel in the hot worked condition. The graph bars on the material properties cards below compare hot finished AISI 305 to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.
Mechanical Properties
Brinell Hardness
170
Elastic (Young's, Tensile) Modulus
200 GPa 29 x 106 psi
Elongation at Break
45 %
Fatigue Strength
210 MPa 30 x 103 psi
Poisson's Ratio
0.28
Shear Modulus
77 GPa 11 x 106 psi
Shear Strength
400 MPa 59 x 103 psi
Tensile Strength: Ultimate (UTS)
580 MPa 84 x 103 psi
Tensile Strength: Yield (Proof)
230 MPa 33 x 103 psi
Thermal Properties
Latent Heat of Fusion
290 J/g
Maximum Temperature: Corrosion
410 °C 780 °F
Maximum Temperature: Mechanical
540 °C 1000 °F
Melting Completion (Liquidus)
1450 °C 2640 °F
Melting Onset (Solidus)
1400 °C 2550 °F
Specific Heat Capacity
480 J/kg-K 0.11 BTU/lb-°F
Thermal Conductivity
16 W/m-K 9.0 BTU/h-ft-°F
Thermal Expansion
17 µm/m-K
Electrical Properties
Electrical Conductivity: Equal Volume
2.4 % IACS
Electrical Conductivity: Equal Weight (Specific)
2.7 % IACS
Otherwise Unclassified Properties
Base Metal Price
16 % relative
Calomel Potential
-70 mV
Density
7.8 g/cm3 490 lb/ft3
Embodied Carbon
3.2 kg CO2/kg material
Embodied Energy
45 MJ/kg 20 x 103 BTU/lb
Embodied Water
150 L/kg 17 gal/lb
Common Calculations
PREN (Pitting Resistance)
18
Resilience: Ultimate (Unit Rupture Work)
210 MJ/m3
Resilience: Unit (Modulus of Resilience)
130 kJ/m3
Stiffness to Weight: Axial
14 points
Stiffness to Weight: Bending
25 points
Strength to Weight: Axial
20 points
Strength to Weight: Bending
20 points
Thermal Diffusivity
4.2 mm2/s
Thermal Shock Resistance
13 points
Alloy Composition
Fe | 65.1 to 72.5 | |
Cr | 17 to 19 | |
Ni | 10.5 to 13 | |
Mn | 0 to 2.0 | |
Si | 0 to 0.75 | |
C | 0 to 0.12 | |
P | 0 to 0.045 | |
S | 0 to 0.030 |
All values are % weight. Ranges represent what is permitted under applicable standards.
Followup Questions
Further Reading
ASTM A276: Standard Specification for Stainless Steel Bars and Shapes
Welding Metallurgy and Weldability of Stainless Steels, John C. Lippold and Damian J. Kotecki, 2005
ASTM A959: Standard Guide for Specifying Harmonized Standard Grade Compositions for Wrought Stainless Steels
Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002
Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984
ASM Specialty Handbook: Stainless Steels, J. R. Davis (editor), 1994
Advances in Stainless Steels, Baldev Raj et al. (editors), 2010