MakeItFrom.com
Menu (ESC)

UNS S21640 Stainless Steel

S21640 stainless steel is an austenitic stainless steel formulated for primary forming into wrought products. Cited properties are appropriate for the annealed condition. It has a moderately high ductility and a moderately high tensile strength among wrought austenitic stainless steels.

The graph bars on the material properties cards below compare S21640 stainless steel to: wrought austenitic stainless steels (top), all iron alloys (middle), and the entire database (bottom). A full bar means this is the highest value in the relevant set. A half-full bar means it's 50% of the highest, and so on.

Mechanical Properties

Brinell Hardness

230

Elastic (Young's, Tensile) Modulus

200 GPa 29 x 106 psi

Elongation at Break

46 %

Fatigue Strength

320 MPa 47 x 103 psi

Poisson's Ratio

0.28

Shear Modulus

78 GPa 11 x 106 psi

Shear Strength

520 MPa 75 x 103 psi

Tensile Strength: Ultimate (UTS)

740 MPa 110 x 103 psi

Tensile Strength: Yield (Proof)

350 MPa 50 x 103 psi

Thermal Properties

Latent Heat of Fusion

290 J/g

Maximum Temperature: Corrosion

490 °C 920 °F

Maximum Temperature: Mechanical

940 °C 1730 °F

Melting Completion (Liquidus)

1430 °C 2610 °F

Melting Onset (Solidus)

1380 °C 2520 °F

Specific Heat Capacity

480 J/kg-K 0.11 BTU/lb-°F

Thermal Conductivity

15 W/m-K 8.7 BTU/h-ft-°F

Thermal Expansion

17 µm/m-K

Electrical Properties

Electrical Conductivity: Equal Volume

2.4 % IACS

Electrical Conductivity: Equal Weight (Specific)

2.8 % IACS

Otherwise Unclassified Properties

Base Metal Price

17 % relative

Density

7.7 g/cm3 480 lb/ft3

Embodied Carbon

3.6 kg CO2/kg material

Embodied Energy

51 MJ/kg 22 x 103 BTU/lb

Embodied Water

150 L/kg 18 gal/lb

Common Calculations

PREN (Pitting Resistance)

26

Resilience: Ultimate (Unit Rupture Work)

280 MJ/m3

Resilience: Unit (Modulus of Resilience)

300 kJ/m3

Stiffness to Weight: Axial

14 points

Stiffness to Weight: Bending

25 points

Strength to Weight: Axial

27 points

Strength to Weight: Bending

23 points

Thermal Diffusivity

4.0 mm2/s

Thermal Shock Resistance

16 points

Alloy Composition

Among wrought stainless steels, the composition of S21640 stainless steel is notable for containing a comparatively high amount of manganese (Mn) and including niobium (Nb). Manganese is used to improve ductility at elevated temperatures. It also permits a higher nitrogen content than would otherwise be possible. Niobium is primarily used to improve yield strength, particularly at elevated temperatures.

Iron (Fe)Fe 63 to 74.3
Chromium (Cr)Cr 17.5 to 19.5
Nickel (Ni)Ni 4.0 to 6.5
Manganese (Mn)Mn 3.5 to 6.5
Molybdenum (Mo)Mo 0.5 to 2.0
Niobium (Nb)Nb 0.1 to 1.0
Silicon (Si)Si 0 to 1.0
Nitrogen (N)N 0.080 to 0.3
Carbon (C)C 0 to 0.080
Phosphorus (P)P 0 to 0.060
Sulfur (S)S 0 to 0.030

All values are % weight. Ranges represent what is permitted under applicable standards.

Followup Questions

Similar Alloys

Further Reading

ASTM A240: Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications

Corrosion of Austenitic Stainless Steels: Mechanism, Mitigation and Monitoring, H. S. Khatak and B. Raj (editors), 2002

Pressure Vessels: External Pressure Technology, 2nd ed., Carl T. F. Ross, 2011

Austenitic Stainless Steels: Microstructure and Mechanical Properties, P. Marshall, 1984

ASM Specialty Handbook: Stainless Steels, J. R. Davis (editor), 1994

Advances in Stainless Steels, Baldev Raj et al. (editors), 2010

CRC Materials Science and Engineering Handbook, 4th ed., James F. Shackelford et al. (editors), 2015