MakeItFrom.com
Menu (ESC)

1060 Aluminum vs. EN 1.8881 Steel

1060 aluminum belongs to the aluminum alloys classification, while EN 1.8881 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1060 aluminum and the bottom bar is EN 1.8881 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 1.1 to 30
16
Fatigue Strength, MPa 15 to 50
460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 42 to 75
510
Tensile Strength: Ultimate (UTS), MPa 67 to 130
830
Tensile Strength: Yield (Proof), MPa 17 to 110
710

Thermal Properties

Latent Heat of Fusion, J/g 400
260
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 660
1460
Melting Onset (Solidus), °C 650
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
40
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 210
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
1.9
Embodied Energy, MJ/kg 160
26
Embodied Water, L/kg 1200
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 0.57 to 37
120
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 89
1320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 6.9 to 13
29
Strength to Weight: Bending, points 14 to 21
25
Thermal Diffusivity, mm2/s 96
11
Thermal Shock Resistance, points 3.0 to 5.6
24

Alloy Composition

Aluminum (Al), % 99.6 to 100
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.35
91.9 to 100
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.25
0 to 0.8
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.030
0 to 0.050
Vanadium (V), % 0 to 0.050
0 to 0.12
Zinc (Zn), % 0 to 0.050
0
Zirconium (Zr), % 0
0 to 0.15