MakeItFrom.com
Menu (ESC)

1070 Aluminum vs. EN 1.4470 Stainless Steel

1070 aluminum belongs to the aluminum alloys classification, while EN 1.4470 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1070 aluminum and the bottom bar is EN 1.4470 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 39
23
Fatigue Strength, MPa 22 to 49
320
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 73 to 140
680
Tensile Strength: Yield (Proof), MPa 17 to 120
480

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
1060
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 640
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
18
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
17
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.6
Embodied Energy, MJ/kg 160
49
Embodied Water, L/kg 1200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
570
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.5 to 14
24
Strength to Weight: Bending, points 14 to 22
22
Thermal Diffusivity, mm2/s 94
4.8
Thermal Shock Resistance, points 3.3 to 6.1
18

Alloy Composition

Aluminum (Al), % 99.7 to 100
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 0 to 0.040
0
Iron (Fe), % 0 to 0.25
63.7 to 71.9
Magnesium (Mg), % 0 to 0.030
0
Manganese (Mn), % 0 to 0.030
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
4.5 to 6.5
Nitrogen (N), % 0
0.12 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.040
0
Residuals, % 0 to 0.030
0