MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. EN 1.6956 Steel

1080A aluminum belongs to the aluminum alloys classification, while EN 1.6956 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is EN 1.6956 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 18 to 40
370
Elastic (Young's, Tensile) Modulus, GPa 68
190
Elongation at Break, % 2.3 to 34
9.6
Fatigue Strength, MPa 18 to 50
680
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 49 to 81
730
Tensile Strength: Ultimate (UTS), MPa 74 to 140
1230
Tensile Strength: Yield (Proof), MPa 17 to 120
1120

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 640
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 230
46
Thermal Expansion, µm/m-K 23
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
9.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
5.0
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 8.3
2.2
Embodied Energy, MJ/kg 160
31
Embodied Water, L/kg 1200
60

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
3320
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 7.6 to 15
43
Strength to Weight: Bending, points 14 to 22
32
Thermal Diffusivity, mm2/s 94
12
Thermal Shock Resistance, points 3.3 to 6.4
36

Alloy Composition

Aluminum (Al), % 99.8 to 100
0
Carbon (C), % 0
0.28 to 0.38
Chromium (Cr), % 0
1.0 to 1.7
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.15
92.4 to 95.3
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0.15 to 0.4
Molybdenum (Mo), % 0
0.3 to 0.6
Nickel (Ni), % 0
2.9 to 3.8
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.15
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0
0.080 to 0.25
Zinc (Zn), % 0 to 0.060
0