MakeItFrom.com
Menu (ESC)

1080A Aluminum vs. Grade 5 Titanium

1080A aluminum belongs to the aluminum alloys classification, while grade 5 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 1080A aluminum and the bottom bar is grade 5 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
110
Elongation at Break, % 2.3 to 34
8.6 to 11
Fatigue Strength, MPa 18 to 50
530 to 630
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 26
40
Shear Strength, MPa 49 to 81
600 to 710
Tensile Strength: Ultimate (UTS), MPa 74 to 140
1000 to 1190
Tensile Strength: Yield (Proof), MPa 17 to 120
910 to 1110

Thermal Properties

Latent Heat of Fusion, J/g 400
410
Maximum Temperature: Mechanical, °C 170
330
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 640
1650
Specific Heat Capacity, J/kg-K 900
560
Thermal Conductivity, W/m-K 230
6.8
Thermal Expansion, µm/m-K 23
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 62
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
36
Density, g/cm3 2.7
4.4
Embodied Carbon, kg CO2/kg material 8.3
38
Embodied Energy, MJ/kg 160
610
Embodied Water, L/kg 1200
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.1 to 19
100 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 100
3980 to 5880
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
35
Strength to Weight: Axial, points 7.6 to 15
62 to 75
Strength to Weight: Bending, points 14 to 22
50 to 56
Thermal Diffusivity, mm2/s 94
2.7
Thermal Shock Resistance, points 3.3 to 6.4
76 to 91

Alloy Composition

Aluminum (Al), % 99.8 to 100
5.5 to 6.8
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.15
0 to 0.4
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.15
0
Titanium (Ti), % 0 to 0.020
87.4 to 91
Vanadium (V), % 0
3.5 to 4.5
Yttrium (Y), % 0
0 to 0.0050
Zinc (Zn), % 0 to 0.060
0
Residuals, % 0
0 to 0.4

Comparable Variants