MakeItFrom.com
Menu (ESC)

1100A Aluminum vs. C12600 Copper

1100A aluminum belongs to the aluminum alloys classification, while C12600 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1100A aluminum and the bottom bar is C12600 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 69
120
Elongation at Break, % 4.5 to 34
56
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
56
Shear Strength, MPa 59 to 99
190
Tensile Strength: Ultimate (UTS), MPa 89 to 170
270
Tensile Strength: Yield (Proof), MPa 29 to 150
69

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 640
1080
Melting Onset (Solidus), °C 640
1030
Specific Heat Capacity, J/kg-K 900
390
Thermal Conductivity, W/m-K 230
130
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 60
29
Electrical Conductivity: Equal Weight (Specific), % IACS 200
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
30
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 8.2
2.6
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1190
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.4 to 23
110
Resilience: Unit (Modulus of Resilience), kJ/m3 5.9 to 150
21
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 50
18
Strength to Weight: Axial, points 9.1 to 17
8.2
Strength to Weight: Bending, points 16 to 25
10
Thermal Diffusivity, mm2/s 93
39
Thermal Shock Resistance, points 4.0 to 7.6
9.5

Alloy Composition

Aluminum (Al), % 99 to 100
0
Copper (Cu), % 0.050 to 0.2
99.5 to 99.8
Iron (Fe), % 0 to 1.0
0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.050
0
Phosphorus (P), % 0
0.2 to 0.4
Silicon (Si), % 0 to 1.0
0
Titanium (Ti), % 0 to 0.1
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0