MakeItFrom.com
Menu (ESC)

2007 Aluminum vs. Grade 25 Titanium

2007 aluminum belongs to the aluminum alloys classification, while grade 25 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 2007 aluminum and the bottom bar is grade 25 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 5.6 to 8.0
11
Fatigue Strength, MPa 91 to 110
550
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 27
40
Shear Strength, MPa 220 to 250
600
Tensile Strength: Ultimate (UTS), MPa 370 to 420
1000
Tensile Strength: Yield (Proof), MPa 240 to 270
940

Thermal Properties

Latent Heat of Fusion, J/g 390
410
Maximum Temperature: Mechanical, °C 190
340
Melting Completion (Liquidus), °C 640
1610
Melting Onset (Solidus), °C 510
1560
Specific Heat Capacity, J/kg-K 870
560
Thermal Conductivity, W/m-K 130
7.1
Thermal Expansion, µm/m-K 23
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 47
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.0

Otherwise Unclassified Properties

Density, g/cm3 3.1
4.5
Embodied Carbon, kg CO2/kg material 8.0
43
Embodied Energy, MJ/kg 150
700
Embodied Water, L/kg 1130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 21 to 26
110
Resilience: Unit (Modulus of Resilience), kJ/m3 390 to 530
4220
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 44
35
Strength to Weight: Axial, points 33 to 38
62
Strength to Weight: Bending, points 37 to 40
50
Thermal Diffusivity, mm2/s 48
2.8
Thermal Shock Resistance, points 16 to 19
71

Alloy Composition

Aluminum (Al), % 87.5 to 95
5.5 to 6.8
Bismuth (Bi), % 0 to 0.2
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0 to 0.1
0
Copper (Cu), % 3.3 to 4.6
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 0 to 0.8
0 to 0.4
Lead (Pb), % 0.8 to 1.5
0
Magnesium (Mg), % 0.4 to 1.8
0
Manganese (Mn), % 0.5 to 1.0
0
Nickel (Ni), % 0 to 0.2
0.3 to 0.8
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 0 to 0.8
0
Tin (Sn), % 0 to 0.2
0
Titanium (Ti), % 0 to 0.2
86.7 to 90.6
Vanadium (V), % 0
3.5 to 4.5
Zinc (Zn), % 0 to 0.8
0
Residuals, % 0
0 to 0.4