MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. ASTM A387 Grade 21 Steel

201.0 aluminum belongs to the aluminum alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
150 to 180
Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.4 to 20
21
Fatigue Strength, MPa 120 to 150
160 to 250
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 290
310 to 370
Tensile Strength: Ultimate (UTS), MPa 370 to 470
500 to 590
Tensile Strength: Yield (Proof), MPa 220 to 400
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 390
260
Maximum Temperature: Mechanical, °C 170
480
Melting Completion (Liquidus), °C 650
1470
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 870
470
Thermal Conductivity, W/m-K 120
41
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 38
4.1
Density, g/cm3 3.1
7.9
Embodied Carbon, kg CO2/kg material 8.7
1.8
Embodied Energy, MJ/kg 160
23

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
140 to 320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 42
18 to 21
Strength to Weight: Bending, points 37 to 44
18 to 20
Thermal Diffusivity, mm2/s 45
11
Thermal Shock Resistance, points 19 to 25
14 to 17

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 4.0 to 5.2
0
Iron (Fe), % 0 to 0.15
94.4 to 96
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0