MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN 1.4525 Stainless Steel

201.0 aluminum belongs to the aluminum alloys classification, while EN 1.4525 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN 1.4525 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 4.4 to 20
5.6 to 13
Fatigue Strength, MPa 120 to 150
480 to 540
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 370 to 470
1030 to 1250
Tensile Strength: Yield (Proof), MPa 220 to 400
840 to 1120

Thermal Properties

Latent Heat of Fusion, J/g 390
280
Maximum Temperature: Mechanical, °C 170
860
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 570
1390
Specific Heat Capacity, J/kg-K 870
480
Thermal Conductivity, W/m-K 120
18
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 38
13
Density, g/cm3 3.1
7.8
Embodied Carbon, kg CO2/kg material 8.7
2.8
Embodied Energy, MJ/kg 160
39

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
68 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
1820 to 3230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 42
36 to 45
Strength to Weight: Bending, points 37 to 44
29 to 33
Thermal Diffusivity, mm2/s 45
4.7
Thermal Shock Resistance, points 19 to 25
34 to 41

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 4.0 to 5.2
2.5 to 4.0
Iron (Fe), % 0 to 0.15
70.4 to 79
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.8
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0

Comparable Variants