MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN 1.4652 Stainless Steel

201.0 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
270
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 4.4 to 20
45
Fatigue Strength, MPa 120 to 150
450
Impact Strength: V-Notched Charpy, J 10 to 22
90
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 290
610
Tensile Strength: Ultimate (UTS), MPa 370 to 470
880
Tensile Strength: Yield (Proof), MPa 220 to 400
490

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 19
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 38
34
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.7
6.4
Embodied Energy, MJ/kg 160
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
340
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
570
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
25
Strength to Weight: Axial, points 33 to 42
30
Strength to Weight: Bending, points 37 to 44
25
Thermal Diffusivity, mm2/s 45
2.6
Thermal Shock Resistance, points 19 to 25
20

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 4.0 to 5.2
0.3 to 0.6
Iron (Fe), % 0 to 0.15
38.3 to 46.3
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.5
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.0050
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0