MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN 1.4659 Stainless Steel

201.0 aluminum belongs to the aluminum alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
260
Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 4.4 to 20
49
Fatigue Strength, MPa 120 to 150
460
Impact Strength: V-Notched Charpy, J 10 to 22
94
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 290
640
Tensile Strength: Ultimate (UTS), MPa 370 to 470
900
Tensile Strength: Yield (Proof), MPa 220 to 400
480

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 650
1480
Melting Onset (Solidus), °C 570
1430
Specific Heat Capacity, J/kg-K 870
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 38
37
Density, g/cm3 3.1
8.2
Embodied Carbon, kg CO2/kg material 8.7
6.5
Embodied Energy, MJ/kg 160
89

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
370
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
550
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 42
31
Strength to Weight: Bending, points 37 to 44
25
Thermal Diffusivity, mm2/s 45
3.2
Thermal Shock Resistance, points 19 to 25
19

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 4.0 to 5.2
1.0 to 2.0
Iron (Fe), % 0 to 0.15
35.7 to 45.7
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.7
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Tungsten (W), % 0
1.5 to 2.5
Residuals, % 0 to 0.1
0