MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. EN AC-45300 Aluminum

Both 201.0 aluminum and EN AC-45300 aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is EN AC-45300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
94 to 120
Elastic (Young's, Tensile) Modulus, GPa 71
71
Elongation at Break, % 4.4 to 20
1.0 to 2.8
Fatigue Strength, MPa 120 to 150
59 to 72
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 370 to 470
220 to 290
Tensile Strength: Yield (Proof), MPa 220 to 400
150 to 230

Thermal Properties

Latent Heat of Fusion, J/g 390
470
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 650
630
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 870
890
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 19
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
36
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
120

Otherwise Unclassified Properties

Base Metal Price, % relative 38
9.5
Density, g/cm3 3.1
2.7
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 160
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
2.7 to 5.6
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
160 to 390
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
50
Strength to Weight: Axial, points 33 to 42
23 to 29
Strength to Weight: Bending, points 37 to 44
30 to 35
Thermal Diffusivity, mm2/s 45
60
Thermal Shock Resistance, points 19 to 25
10 to 13

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
90.2 to 94.2
Copper (Cu), % 4.0 to 5.2
1.0 to 1.5
Iron (Fe), % 0 to 0.15
0 to 0.65
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.15 to 0.55
0.35 to 0.65
Manganese (Mn), % 0.2 to 0.5
0 to 0.55
Nickel (Ni), % 0
0 to 0.25
Silicon (Si), % 0 to 0.1
4.5 to 5.5
Silver (Ag), % 0.4 to 1.0
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0.15 to 0.35
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15

Comparable Variants