MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. CC765S Brass

201.0 aluminum belongs to the aluminum alloys classification, while CC765S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is CC765S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 95 to 140
130
Elastic (Young's, Tensile) Modulus, GPa 71
110
Elongation at Break, % 4.4 to 20
21
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
42
Tensile Strength: Ultimate (UTS), MPa 370 to 470
540
Tensile Strength: Yield (Proof), MPa 220 to 400
220

Thermal Properties

Latent Heat of Fusion, J/g 390
180
Maximum Temperature: Mechanical, °C 170
140
Melting Completion (Liquidus), °C 650
860
Melting Onset (Solidus), °C 570
820
Specific Heat Capacity, J/kg-K 870
400
Thermal Conductivity, W/m-K 120
91
Thermal Expansion, µm/m-K 19
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
30
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
34

Otherwise Unclassified Properties

Base Metal Price, % relative 38
24
Density, g/cm3 3.1
8.0
Embodied Carbon, kg CO2/kg material 8.7
3.0
Embodied Energy, MJ/kg 160
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
90
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
220
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 45
20
Strength to Weight: Axial, points 33 to 42
19
Strength to Weight: Bending, points 37 to 44
18
Thermal Diffusivity, mm2/s 45
28
Thermal Shock Resistance, points 19 to 25
17

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0.5 to 2.5
Antimony (Sb), % 0
0 to 0.080
Copper (Cu), % 4.0 to 5.2
51 to 65
Iron (Fe), % 0 to 0.15
0.5 to 2.0
Lead (Pb), % 0
0 to 0.5
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0.3 to 3.0
Nickel (Ni), % 0
0 to 6.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 0.1
Silver (Ag), % 0.4 to 1.0
0
Tin (Sn), % 0
0 to 1.0
Titanium (Ti), % 0.15 to 0.35
0
Zinc (Zn), % 0
19.8 to 47.7
Residuals, % 0 to 0.1
0