MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. N06650 Nickel

201.0 aluminum belongs to the aluminum alloys classification, while N06650 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is N06650 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 4.4 to 20
50
Fatigue Strength, MPa 120 to 150
420
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
82
Shear Strength, MPa 290
640
Tensile Strength: Ultimate (UTS), MPa 370 to 470
900
Tensile Strength: Yield (Proof), MPa 220 to 400
460

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 650
1500
Melting Onset (Solidus), °C 570
1450
Specific Heat Capacity, J/kg-K 870
440
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 38
60
Density, g/cm3 3.1
8.6
Embodied Carbon, kg CO2/kg material 8.7
10
Embodied Energy, MJ/kg 160
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19 to 63
380
Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
490
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
23
Strength to Weight: Axial, points 33 to 42
29
Strength to Weight: Bending, points 37 to 44
24
Thermal Shock Resistance, points 19 to 25
24

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0.050 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 4.0 to 5.2
0 to 0.3
Iron (Fe), % 0 to 0.15
12 to 16
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
0 to 0.5
Molybdenum (Mo), % 0
9.5 to 12.5
Nickel (Ni), % 0
44.4 to 58.9
Niobium (Nb), % 0
0.050 to 0.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0.15 to 0.35
0
Tungsten (W), % 0
0.5 to 2.5
Residuals, % 0 to 0.1
0