MakeItFrom.com
Menu (ESC)

201.0 Aluminum vs. R30003 Cobalt

201.0 aluminum belongs to the aluminum alloys classification, while R30003 cobalt belongs to the cobalt alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 201.0 aluminum and the bottom bar is R30003 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 4.4 to 20
10 to 73
Fatigue Strength, MPa 120 to 150
320 to 560
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
83
Tensile Strength: Ultimate (UTS), MPa 370 to 470
970 to 1720
Tensile Strength: Yield (Proof), MPa 220 to 400
510 to 1090

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Melting Completion (Liquidus), °C 650
1400
Melting Onset (Solidus), °C 570
1440
Specific Heat Capacity, J/kg-K 870
450
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30 to 33
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 87 to 97
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 38
95
Density, g/cm3 3.1
8.4
Embodied Carbon, kg CO2/kg material 8.7
8.0
Embodied Energy, MJ/kg 160
110

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 330 to 1160
600 to 2790
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 45
24
Strength to Weight: Axial, points 33 to 42
32 to 57
Strength to Weight: Bending, points 37 to 44
26 to 38
Thermal Diffusivity, mm2/s 45
3.3
Thermal Shock Resistance, points 19 to 25
26 to 45

Alloy Composition

Aluminum (Al), % 92.1 to 95.1
0
Boron (B), % 0
0 to 0.1
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0
39 to 41
Copper (Cu), % 4.0 to 5.2
0
Iron (Fe), % 0 to 0.15
10 to 20.5
Magnesium (Mg), % 0.15 to 0.55
0
Manganese (Mn), % 0.2 to 0.5
1.5 to 2.5
Molybdenum (Mo), % 0
6.0 to 8.0
Nickel (Ni), % 0
14 to 16
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 1.2
Silver (Ag), % 0.4 to 1.0
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0.15 to 0.35
0
Residuals, % 0 to 0.1
0